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The robustness of localized states that transport energy and mass is assessed by a 
numerical study of the Euler equation in two space dimensions. The localized states 
are the translating ‘ V-states’ discovered by Deem & Zabusky. These piecewise- 
constant dipolar (i.e. oppositely-signed f or f ) vorticity regions are steady 
translating solutions of the Euler equations. A new adaptive contour-dynamical 
algorithm with curvature-controlled node insertion and removal is used. The 
evolution of one V-state, subject to a symmetric-plus-asymmetric perturbation is 
examined and stable (i.e. non-divergent) fluctuations are observed. For scattering 
interactions, coaxial head-on (or f on f ) and head-tail (or & on f ) arrangements 
are studied. The temporal variation of contour curvature and perimeter after V-states 
separate indicate that internal degrees of freedom have been excited. For weak 
interactions we observe phase shifts and the near recurrence to initial states. When 
two similar, equal-circulation but unequal-area V-states have a head-on interaction 
a new asymmetric state is created by contour ‘exchange’. There is strong evidence 
that this is near to a V-state. For strong interactions we observe phase shifts, 
‘ breaking ’ (filament formation) and, for head-tail interactions, merger of like-signed 
vorticity regions. 

1. Introduction 
It is well-known that solitary (nonlinear-dispersive) waves can transport energy 

over long distances and deposit it in small inhomogeneous spatial regions. Some of 
these systems can be described by non-dissipative one-space and one-time dimensional 
equations whose solitary waves are solitons. These systems are ‘integrable’ and the 
solitons are preserved through interactions. If small amounts of dissipation are added 
to some of these systems they become ‘near-integrable’ and the soliton becomes a 
slowly decaying solitary entity. However, in many cases the essential features of 
soliton interactions are preserved. Some aspects of this subject are discussed in the 
review by Zabusky (1981). 

We now ask: Can one find localized steady-state entities in two space dimensions 
that can transport energy and mass 1 Furthermore, how robust are these entities when 
interacting with each other Z Nuclear physicists have begun to study nonlinear 
dynamical problems with finite-difference simulations of particle-like entities char- 
acterized by ‘ confinement potentials’ (Makhanov 1980; Simonov & Tjon 1980). 
McWilliams & Zabusky (1982) have examined ‘modon’ interactions by finite- 
difference simulations. These modons are steady-state solutions of the geostrophic 
/3-plane equations that have continuous distributions of vorticity in localized regions 
(Flier1 et al. 1980) and have been associated with the phenomenon of atmospheric 
‘blocking’ (McWilliams 1980). 
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In  the present paper we will apply a contour dynamical algorithm to study the 
interaction of translating ' V-states ', steady-state solutions of the two-dimensional 
Euler equations (Deem & Zabusky 1978a, 6 ) .  These states, discovered by Deem & 
Zabusky, are localized dipolar (i.e. oppositely signed) piecewise-constant vorticity 
regions. In  the contour-dynamics approach we study the evolution of piecewise- 
constant quantities by following the motion of their boundaries. This contour-integral 
method employs a Green function for the unbounded domain and does not require 
an underlying two-dimensional mesh. The present improved algorithm is adaptive, 
and inserts and removes nodes as a function of local curvature. Thus, it can follow 
accurately the evolution of contours into narrow sheet-like vortex regions. A similar 
algorithm was used to study the 'merger' of monopolar (i.e. like-signed) vortex 
regions (Overman & Zabusky 1982). 

We will study numerically parameter regions where the interactions lead to either 
the formation of new nearly-stationary states, the near-recurrence of initial states, 
or strong deformation and breaking of initial states. I n  $2 and appendix B we discuss 
the improved contour dynamical algorithm and diagnostics including the contour 
curvature. In  $3 we discuss the results obtained from various simulations. In  $4 we 
indicate possible directions for future research. 

2. Euler equations, translating V-states, contour-dynamical algorithm and 
diagnostics 

The Euler equations in two space dimensions can be written in vorticity- 
stream-function form as 

ut+Uux+vWy = 0, A$ E $.,z+$yy = -0, (1  a ,  b )  

where u = $y, v = -$.,. ( 1 4  

I f  the vorticity is composed of a set of piecewise-constant finite-area-vortex regions 
(or FAVRs), that is, each member of the set is a characteristic function xi of 
magnitude wi and boundary do i ,  or u ( x ,  y ,  t )  = Ziwi xi(", y ,  t ) ,  then 

where we use the two-dimensional Green function 

G = $ l o g [ ( ~ - 6 ) ~ + ( y - 7 ) ~ ]  = logr, (3) 

for flow in an unbounded domain. Equation (1  a )  says that every point of the fluid 
including the boundary is convected with the flow. The evolution equations for 
boundary points (x, y )  is the area-preserving mapping 

( X t ,  yt) = ( u ( x ,  y ,  t ) ,  u(x, y ,  t ) )  = ( 2 n ) - ' ~ w i ~ ~ ~ l l o g r ( d 6 .  d7). (4) 

We have used Green's theorem to replace the area integral over the domain of xi by 
the line integral over dD, thus reducing the dimension by one. 

It is well known that two point (singular) vortices of opposite (i.e. dipolar) 
circulation & r and separation 2jj translate parallel to the x-axis with speeds 
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To find a symmetric doubly-connected FAVR that translates with velocity V parallel 
to the x-axis, we apply the boundary condition 

(6) 

(7) 

- . "particle - n. "boundary, 

@(x, y) + VY = ci, (x, Y) E dDi, (8) 

where the ci are constants and i = 1 , 2  corresponds to the contours. @ is obtained 
from (2) as a line integral over both contours. Since the location of the boundary is 
unknown, (7) or (8) are nonlinear integral equations. 

The first translating V-state was obtained from a discretized form of (7) by Deem 
& Zabusky (1978a). They can be thought of as apiecewise-constant 'desingularization ' 
of two oppositely-signed point vortices. Using a discretized form of (8), Pierrehumbert 
(1980) obtained a set of 12 states whose upper half-plane contour lies in the range 
ymin < y < 1.0 (and ymin = 0, the limiting case). He studied their properties, including 
the variation of V/V*  with ymin. For 001 < ymin < 09,  Wu, Overman & Zabusky 
(1982) verified the results of Pierrehumbert, as shown in figure 1 and summarized 
in appendix A. (However, his limiting case is not accurate.) I n  the scattering 
simulations described below we use state H (between G and I in figure l ) ,  where 

The contour-dynamics algorithm is obtained by discretizing (4) (Zabusky , Hughes 
ymin = 0.2. 

& Roberts 1979), i.e. 
N i  

( x m ,  9,) = T w i  Z A u m , , ; i  ( C O S e n ; i ,  sin en;,), (9) 
a n = 1  

where the i-sum is over all the contours. Au,, ; i  is given in appendix B along with 
an algorithm for node insertion and removal to control truncation errors. An 
Euler-predictor trapezoidal-corrector algorithm is used to solve the ordinary dif- 
ferential equations in ( Q ) ,  and the choice of the time step is also discussed in 
appendix B. 

3. Dynamical evolution of pairs of translating V-states 
3.1. Introduction 

In  this first study of translating V-state interactions we simplify the parameter space 
by examining coaxial collisions. The resulting symmetry allows us to reduce the 
computational load by a factor of 2. 

We use two forms of V-state H (see table 2 in appendix A), which we henceforth 
call V-state no. 1 and V-state no. 2. V-state no. 1 lies in the range 0.2 < y < 1.0 and 
always has an upper half-plane vorticity density of + 1.0. To study size effects, V-state 
no. 2 either lies in the range 0.2 < y < 1-0 or 0 1  < y < 05  (i.e. i t  has been scaled down 
by a factor of two) and has various vorticity densities. Table 1 gives parameters for 
the cases (a)-(m) discussed below. This letter designation is also adopted in the figures, 
e.g. figure 4(c) gives results for case (c) on figure 4. 

3.2. Diagnostics 
To summarize the interactions we generally give figures composed of panels showing 
the upper-half-plane contours, where time increases downwards. I n  some intervals 

1-2 



190 E.  A .  Overman and N .  J .  Zabusky 

FIGURE 1. Translating I.’-states of the two-dimensional Euler equations. Only the upper-half-plane 
contours are shown. The lower-half-plane contours are symmetric. 

the panels are equally spaced in time to aid the reader to obtain a space-time feeling 
for the event. I n  all cases the spatial scales of all panels on each figure are identical. 
On separate figures (1 1 and 12) we give respectively a trajectory diagram ( z f t ) ,  g ( t ) )  
and a ‘phase-shift’ diagram (p ( t ) ,  t )  of the centroids of the upper-half-plane V-state 
contours. In  figures 2, 3 and 8 we also present selected diagnostics like area change 
(AA/A)$ ,  perimeter change ( A P / P ) i ,  total velocity change (A V /  V ) %  and maxIcurva- 
turel change ( A K / K ) ~  ‘us. time. The scalar changes are defined as 

and the total velocity change is defined as 

where V i  is the velocity of the centroid of contour i ,  obtained by a simple difference. 
The curvature of a contour 

4 5 )  = xs Yss - Y s  xss  

is computer numerically by differentiating a periodic cubic spline that is fit to the 
nodes (as described in appendix C of Zabusky & Overman 1982). If contours ‘sharpen’ 
and ‘break’, as observed below, this differentiation can give rise to local small-scale 
oscillations because the cubic spline has difficulty fitting such distributions. These 
oscillations do not affect our velocities since the curvature is not used in evaluating 
A U , , , ; ~  in (9). (See figure 10 for initial and final curvatures of case (I). 

3.3. Stability of a translating V-state 
We examine the question of the stability of V-state H to an asymmetric perturbation 
by the method of detailed numerical simulation. We do not assume symmetry about 
the x-axis, and begin with an initial state constructed as follows. 

(i) The upper and lower contours of V-state H are displaced toward the x-axis by 
005. Hence the smallest distance between the upper and lower contours is 0.3. 

(ii) The upper contour R+(s) is perturbed with a ‘third’ harmonic. That is, if R+(s) 
is the position as a function of arclength with respect to  the centroid, we obtain the 
perturbed position R as 

R(s) = R+(s)+001 cos - e , ( s ) ,  (3 
where e,(s) is the outward normal to the unperturbed contour, and P+ is the perimeter 
of the unperturbed contour. 
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AVf V 
0.01 t 

AKIK 
0.5 

-0.02 
200 

O’Oo5 T 

1 

-0.02 - 
0 200 

Upper contour Lower contour 

FIGURE 2. Diagnostics for the effects resulting from an asymmetric perturbation given to V-state H .  

(iii) Since this perturbation increases the area of the upper contour by (1 /09787)2 ,  
we rescale the linear dimensions by 0.9787 about the point (0, 0*15), that is, 

x + 0 * 9 7 8 7 ~ ,  y + 0 9 7 8 7 ( ~ - 0 1 5 ) + 0 * 1 5 .  

The effects of this perturbation are given in the diagnostics of figure 2 .  A 
fifth figure is included that gives the relative change in the y-centroid position. In 
200 units of time the V-state translates 20 units (about 20 V-state lengths) and we 
do not observe any instability. The initial perturbation introduces a nearly harmonic 
perimeter fluctuation of period 13.3 in both contours. This is also manifest in the 
relative velocity change and in the relative maximum-curvature change. (We also 
observe a second harmonic in this diagnostic.) The y-centroid motion results from 
the fact that the areas within the two contours agree initially to only four significant 
figures after the initial asymmetric perturbation is inserted. That is, since the areas 
differ, then the net circulations differ and the centroid of the state moves on a circle 
of very large radius. 

3.4. Head-on (+ t) interactions (or f on T vorticity arrangements) 
Figure 3 (case a)  is a composite that shows two approaching V-states with 
Tz/T1 = - 1.0 and unlike area. They ‘exchange ’ into an outgoing asymmetric nearly 
steady configuration, as discussed below. It is travelling in a north-easterly direction 
with a velocity intermediate between those of the incoming V-states. A t  t = 0 they 
are maximally separated (zc(0) = 40) and the highest state shown is at t = 60. The 
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0 5 

193 

FIQURE 3. V-state ‘exchange’ in a head-on interaction: TJT, = -1.0, case (a). 

time increment between states is At = 12. The dots indicate the discretization used. 
The number of nodes on contours (1 ,2)  increased from (64, 66) at t = 0 to (77, 115) 
at t = 60. The ‘ x ’ marks the centroids of the figures. The numbers on the contours 
label the same node and give one a feeling for its motion. Figure 11 (a )  repeats the 
trajectory diagram and figure 12 ( a )  gives the phase-shift diagram. 

Figure 4 ( a )  contains four diagnostics for each of the contours. During the brief 
‘exchange ’ interval all quantities undergo abrupt changes. ( A A / A ) ,  begins to 
increase a t  a more rapid rate because of its increased aspect ratio and the new region 
of negative curvature. The velocity of no. 1 increases and no. 2 decreases so as to 
conserve linear momentum. The new asymmetric state that has formed seems ‘near’ 
a V-state, for in (APIP), and (AK/K) ,  one sees small-amplitude oscillations about new 
steady values. (Note that the new steady perimeter is about 10% larger than the 
initial perimeter, whereas the perimeter change associated with the area change is 
0125%. 

To examine more quantitatively the near-steady behaviour, we remove the 
lower-half-plane contours and restart the problem and run it for 50 additional time 
units. Diagnostics are given in figure 5. The larger contour exhibits a nearly harmonic 
perimeter fluctuation of 0 5 %  amplitude, an effect also manifest in the other 
diagnostics. Also, the 5% peak A K / K  fluctuation is consistent with a very small 
perturbation from a steady configuration. 

Case ( b )  given in figure 6(b )  is the result of changing the circulation ratio r2/r, to 
-0.5. The approaching V-states undergo a complicated interaction where no. 1 passes 
below no. 2 as shown in the trajectory diagram of figure 11 ( b )  and the ‘phase-shift ’ 
diagram of figure (12 b) .  

A complete set of diagnostics is shown in figure 4 ( b ) .  AP/P and A V/ V are almost 
exactly symmetric about apoint in time. The change in sign in (AP/P)2 (see +) toward 
the end of the run is probably due to the numerically induced area change seen in 

Case ( c ) ,  given in figure 6(c )  is the result of changing the circulation ratio l?,/T, to 
- 1.5. During the interaction, no. 1 passes above no. 2,  as shown in figure 11 ( c ) ,  and 
no. 1 is left in an excited (distorted) state as i t  translates to the right. The diagnostics 

(AA/A)2. 
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FIGURE 4 Diagnostics for head-on interactions: area change AAIA;  perimeter change APIP,  
velocity change A V /  8; maximum-curvature change AK/K. 

given in figure 4 (c) show a stronger and less symmetric interaction than obtained in 
case ( b ) ,  and contour 1 is left with small perimeter and curvature fluctuations. Figure 
12 (c) shows the phase-shift diagram, where no. 1 is accelerated and no. 2 is decelerated 
through the interaction, the reverse of the processes that occurs in case b. 

Figures 6 ( d )  and ( e )  give head-on cases where no. 1 and no. 2 have the same area 
(no. 2 has been increased by a factor of 4.0) and the circulation ratios are -4.0 and 
-6.0, respectively. This causes no. 1 to loop above no. 2 (as shown in figures 11 d ,  e ) ,  
consistent with case ( c ) .  Case ( d )  shows a 'weak' tendency to break, and case ( e )  shows 
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a stronger interaction and breaking occurs earlier. This is seen in the earlier and larger 
perimeter growth in case ( e )  compared with case ( d ) .  Note that (APIP), is ‘ringing’ 
after the interaction, and the oscillation is in-phase with A K I K .  It is reasonable to 
expect that a piece of no. 1 would have elongated around no. 2, before i t  escaped to 
the right if we have examined a case where the circulation ratio was made > 6.0. 

3.5. Head-tail (+ +) interactions (or f on f vorticity arrangements) 

Figures 7 ( f i )  show four head-tail cases, where the area ratio is 1 : 4 and the circulation 
ratios T,/T, are (&, Q, &, Q). As one increases the circulation ratio towards unity, the 
‘ wrap-around ’ tendency becomes stronger. Finally, capture is observed in (i). 
Diagnostics APIP and AVIV are given in figure 8. The tendency towards capture 
is shown in (AP/P) l ,  whose final amplitude increased monotonically (from f-i), and 
in ( A V / V ) , ,  whose value is increasing at  the end of the run (cases ( h )  and (i), see t). 

Figures 9U-m) show four head-tail cases where the area ratio is 1 : 1 and the 
circulation ratios T2/r1 are 1.0,2*0,3.0 and 6.0. Since cases ( i ) - (k )  bear a resemblance, 
we conclude that if the areas of V-states are suficiently close, head-tail interactions i n  
the range 8 < TJT, < f lead to ‘capture’ or ‘merger’ of like-signed vorticity regions. If 
more runs were made, and some dissipative regularization introduced, we would 
undoubtedly sharpen the boundaries of T,/Tl ratios. 

There is less of a tendency towards ‘capture’ as the circulation ratio increases 
beyond 2.0. However, both contours develop regions of high curvature as shown for 

0 1 2  3 4  0 1 2 3 4  0 1 2 3 4  0 1 2 3 4  

t = O  1 1=0 r=O 1 t = O  - 
6 - :  6 6 - - &  6 -  , 6 ;s 6 

0% 23 ,@ 

- 

3 4 5 6 1 8  3 4 5 6 1 8 4 5 6 1 8  2 3 4 5 6 1  
40 - 40 - 50 - 40 

52 - 48 - 60 - I 8 9 10 1 1  
80 a@ : a m  d= 3 
86 

633 6 5 6 t  ,6j4: ad 
Q a ,6 

64 - 

fJ 66 3)92 70 - 64 - 

(& , 
b681 

t , 
(-J69: 

16 - 
&-a : 

&&a-; 
82 - 

v, (h)  (0 



FIGURE 8. Diagnostics for head-tail interactions: APlP and AV/ V. 
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4. Conclusions 
The panorama of results shows clearly the qualitative effects of interaction 

symmetry (i.e. head-on us. head-tail), internal degrees of freedom (or self-consistent 
contour interactions), and V-state size on the nature of coaxial V-state interactions. 
Head-tail interactions show a greater tendency to break (or cascade 'enstrophy' to 
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I00 

( b )  
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(0) 

FIGURE 12. Phase-shift diagrams (%(t) ,  t ) .  (Space and time scales are identical for all figures.) 

higher wavenumbers), probably because of the nature of flow fields produced by 
dipolar & on & vortex distributions. Vortex regions of larger spatial extent show 
a greater tendency to break. A quantitative understanding of these phenomena and 
their dependence on aspect ratio and non-coaxiality await more detailed analytical 
and computational studies. For example, if the effective radii of the interacting 
V-states are small compared with their distance of vertical separation, then the 
contours are weakly perturbed. Thus, it  is possible that we can obtain essential 
features of such an interaction by initially replacing each V-state by two (Love 1894) 
or more point vortices. However, for close interactions of physically realistic vorticity 
distributions, we will require V-states containing several nested contours. To avoid 
the computational burden associated with breaking and the development of regions 
of high curvature a t  long times, we are required to introduce dissipative regularization 
(Zabusky & Overman 1982) and contour topology changes. The former process 
realistically mimics viscous smoothing. I n  the latter processes, we will cut and rejoin 
the same contour if regions approach or cut and eliminate regions of different contours 
if these regions approach too closely. 

The algorithm development work was supported by the Office of Naval Research, 
contract N00014-77-C-0520, Task NR 062 583. The applications to head-on and 
head-tail interactions was supported by the Army Research Office, contract DAAG- 
29-80-K-0072. The original simulations of cases (a)-(1) as shown in figures 2 , 4 , 5  and 
7 were performed on the CRAY-1 computer a t  the Na#tional Center for Atmospheric 
Research (supported by the National Science Foundation) through a computer-time 
grant. 
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state 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 

Ymin 

0 9  
08 
0 7  
0 6  
05 
0 4  
03 
0 2  
0 1  
005  
0 0  1 

g 
0.9499 
08997 
08495 
07993 
07487 
06975 
06446 
05873 
05171 
04729 
04296 

A 

07839 
03143 
0 7  136 
0.1290 
02071 
03116 
04565 
06816 
01133 
01592 
02225 

P 
04141 
07294 
1.049 
1.376 
1.718 
2-088 
2.519 
3098 
4.163 
5.158 
6731 

V 

- 06567 
-02773 
-06681 
-01278 
-02193 
- 03535 
- 05552 
-08819 
-01486 
-01969 
- 02446 

TABLE 2. Symmetric dipolar translating V-states 

v/ v* 
1 .ooo 
1~000 
1 .ooo 
0996 
0996 
0995 
0985 
0955 
0852 
0735 
0594 

Appendix A. Properties of symmetric dipolar translating V-states 
Table 2 presents properties of the translating V-states. These were obtained by 

solving a discretized form of (8) by the method of Pierrehumbert. N corresponds to 
the case letters, some of which are shown in figure 1. We used state H in all simulations 
presented in this paper. The states lie in the range ymin < y d 1.0, and is the distance 
from the x-axis to the upper-half-plane centroid. A is the area and P is the perimeter 
of the upper-half-plane contour. V is the translating velocity of the V-state and V/ V* 
is a normalized speed, where V* is given in ( 5 ) .  

Appendix B. The improved contour-dynamical algorithm 

on a contour we obtain (9), where 
If we perform the integration in (4) over straight-line segments joining each node 

Here rm, 
the subscript i that labels the contours), 

is the straight-line distance between nodes m and n (we have suppressed 

, (B 2 )  
( x n  - x m )  (%,+I - 2,) + (Yn - Y m ) ( Y n + l -  Y n )  

h2, 
A m n  = 

and H is the Heaviside step function, i.e. 

1 (2 2 01, 

0 ( z  < 0). 
H ( z )  = 

I f  n = m, ( B  1) simplifies to 
1 

B u m , ,  = ~ [ l n r m . m + l - l l ,  
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since A,, = B,, = 0,  while if n = m -  1 

since A,, 
Equation (B 1 )  differs from the previously given value (equation (18) of McWilliams 

1980) in the last term. This term appears only when C ,  < 0 or, equivalently, if the 
angle between the lines from node m to node n and from node m to  node n + 1 is > in.  
This may occur if a contour breaks and forms filaments whose sides approach or if 
two different contours approach close to one another in a merger, because the 
node-insertion-and-removal algorithm maintains h, 2 hmin, an a priori prescribed 
value. 

The velocities in (9) are used to move the contour nodes (x,, y,) with an 
Euler-predictor and a trapezoidal-corrector algorithm. The time step At is determined 
by the maximum change in area (or angular momentum) to  be allowed per unit time. 
(Since we are solving a Lagrangian system of equations, we do not have a Courant 
condition to determine the time step.) I n  all the runs shown here the relative area 
change per step is A A / A  = 0.84375 x and At is readjusted every 20 time steps. 
We find that 0015 < At < 0 0 2  for all the runs. 

I n  the improved node-insertion-and-removal algorithm we insert and remove nodes 
using both local (Zabusky et al. 1979) and global adaptive methods. Locally, we 
attempt to set the internodal distance h, to C ~ I K , ~ - ~ ,  which is inversely proportional 
to the local curvature, but we require it to satisfy two constraints: 

= - 1 and B,, m-l = 0. 

In  all the runs c1 = 0.1 (which places - 2077 nodes on a circle of unit radius), 
hmin = 0.01 and r = 03.  Globally, we choose h$Lx to take into account the possibility 
that one part of a contour may approach another part or that  two contours may 
approach each other. This is done by setting 

where dmin, obtained by a search algorithm, is the minimum distance from node k 
to a point on a neighbouring contour or a ' non-adjacent ' point on the same contour. 
Usually hgLx will be the minimum of h,,, the maximum allowed distance between 
nodes, or c2dmin (in all our runs h,,, = 0.20 and c2 = 0.50). 
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